Solvent-free copper-catalyzed click chemistry for the synthesis of N-heterocyclic hybrids based on quinoline and 1,2,3-triazole

نویسندگان

  • Martina Tireli
  • Silvija Maračić
  • Stipe Lukin
  • Marina Juribašić Kulcsár
  • Dijana Žilić
  • Mario Cetina
  • Ivan Halasz
  • Silvana Raić-Malić
  • Krunoslav Užarević
چکیده

Copper-catalyzed mechanochemical click reactions using Cu(II), Cu(I) and Cu(0) catalysts have been successfully implemented to provide novel 6-phenyl-2-(trifluoromethyl)quinolines with a phenyl-1,2,3-triazole moiety at O-4 of the quinoline core. Milling procedures proved to be significantly more efficient than the corresponding solution reactions, with up to a 15-fold gain in yield. Efficiency of both solution and milling procedures depended on the p-substituent in the azide reactant, resulting in H < Cl < Br < I reactivity bias. Solid-state catalysis using Cu(II) and Cu(I) catalysts entailed the direct involvement of the copper species in the reaction and generation of highly luminescent compounds which hindered in situ monitoring by Raman spectroscopy. However, in situ monitoring of the milling processes was enabled by using Cu(0) catalysts in the form of brass milling media which offered a direct insight into the reaction pathway of mechanochemical CuAAC reactions, indicating that the catalysis is most likely conducted on the surface of milling balls. Electron spin resonance spectroscopy was used to determine the oxidation and spin states of the respective copper catalysts in bulk products obtained by milling procedures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Three-Component and Click Strategy for Synthesis of β-Hydroxy 1,4-Disubstituted 1,2,3-Triazoles Derivatives Catalyzed by 1,4-Dihydroxyanthraquinone-copper(II) Complex onto Nano AlPO4

In this work, copper(II) heterogeneous nanocatalyst supported on modified AlPO4 (Cu(II)-DA@Nano AlPO4) was used for the synthesis of some biological active heterocyclic molecules, particularly for the efficient conversion of a wide range of non-activated terminal alkynes to β-hydroxy 1,4-disubstituted 1,2,3-triazolethrough a three-component “click” reaction at room temperature in water. The reg...

متن کامل

A Novel Strategy of Ugi-4CR/Huisgen 1,3-Dipolar Synthesis of 1H-1,2,3-Triazole-Modified Peptidoimetics

In this protocol, we report a novel approach for the synthesis of a new class of heterocyclic 1H-1,2,3-triazole-modified peptidomimetic compounds. The process consists of an Ugi four-component condensation reaction of amines, an isocyanide, an aldehyde and acids followed by a Huisgen 1,3-dipolar cycloaddition reaction with an azide group in the presence of a catalytic amount of CuSO4</...

متن کامل

Synthesis and Characterization of Isomeric Vinyl-1,2,3-triazole Materials by Azide-Alkyne Click Chemistry

The synthesis of isomeric, functionalized 4-vinyl-1,2,3-triazole and 5-vinyl-1,2,3-triazole monomers is demonstrated using heterogeneous copper (copper-in-charcoal)-catalyzed azide-alkyne cycloaddition (CuAAC) or homogeneous ruthenium (Ru)-catalyzed azide-alkyne cycloadditions (RuAAC) “click” protocols. These reactions are regiospecific, exclusively forming 1,4and 1,5-disubstituted triazoles as...

متن کامل

Synthesis of 1,4-disubstituted 1,2,3-triazoles Catalyzed by Eggshell-supported-Cu(I) Metformin Complex as a Heterogeneous Catalyst in Water

An efficient and eco-friendly method has been developed for the synthesis of 1,4 disubstituted 1,2,3-triazoles using the eggshell-supported-Cu(I) metformin complex as a natural and heterogeneous catalyst. The catalyst prepared is characterized by FT-IR spectroscopy, SEM, and ICP techniques. Terminal alkynes were successfully reacted with alkyl chloride and sodium azide in the presence of CuI im...

متن کامل

Multicomponent click synthesis of new 1,2,3-triazole derivatives of pyrimidine nucleobases: promising acidic corrosion inhibitors for steel.

A series of new mono-1,2,3-triazole derivatives of pyrimidine nucleobases were synthesized by one-pot copper(I)-catalyzed 1,3-dipolar cycloaddition reactions between N-1-propargyluracil and thymine, sodium azide and several benzyl halides. The desired heterocyclic compounds were obtained in good yields and characterized by NMR, IR, and high resolution mass spectrometry. These compounds were inv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2017